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Abstract: We present a holographic optical tweezers system capable of
position clamping multiple particles. Moving an optical trap in response
to the trapped object’s motion is a powerful technique for optical control
and force measurement. We have now realised this experimentally using a
Boulder Nonlinear Systems Spatial Light Modulator (SLM) with a refresh
rate of 203Hz. We obtain a reduction of 44% in the variance of the bead’s
position, corresponding to an increase in effective trap stiffness of 77%.
This reduction relies on the generation of holograms at highspeed. We
present software capable of calculating holograms in under1ms using a
graphics processor unit.
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1. Introduction

Optical tweezers are a technique by which the user can hold and manipulate micron sized
particles for use in a range of experimental procedures. They rely on the optical gradient force
created when a tightly focused laser beam is incident on a dielectric particle, pulling it towards
the local maxima of intensity [1]. This means that particlescan be effectively constrained at a
laser focus. Furthermore, by moving the position of the focus the particle may be translated.
Holographic optical tweezers (HOT) take this further by using a spatial light modulator (SLM)
to dynamically split and control the laser beam [2]. By this method, multiple optical traps may
be created and manipulated in arbitrary 3D configurations without time-sharing [3], over tens
of microns in the lateral and axial directions [4].

Previously, various techniques have been used to effect feedback control over optically
trapped objects and limit the effect of Brownian motion. Most commonly galvanometer-driven
mirrors and Acousto-Optic Deflectors (AODs) have been used in conjunction with Quadrant
Photodiodes (QPDs) to provide high bandwidth feedback [5, 6]. However, other techniques
such as piezoelectric stage control [7] or intensity modulation [8] have also been used. Many
such feedback systems are used in biological experiments [9], where position or force feedback
control can help prevent damage to biological specimens or increase measurement sensitivity.
Until now, most SLMs have updated at video frame rates and hadresponse times of tens of mil-
liseconds, meaning that they are unresponsive at short time-scales. Closed-loop control of HOT
has been demonstrated for slowly varying biological forces[10], however the performance of
such a system has not been discussed for a bandwidth of more than 0.2Hz.

Recent improvements in the speed of both liquid-crystal based SLMs and modern CMOS
camera technology [11, 12] mean that we are able to report holographic optical tweezers that
react to a particle’s motion in a few milliseconds. Moreover, using a camera allows multiple
particles to be tracked, a significant advantage over QPD-based systems. This allows much
more sophisticated trap configurations to be used with feedback, for example a tool or probe
controlled by multiple traps [13, 14].
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Fig. 1. (a) Experimental setup; a 532nm laser beam is expanded then steered via an SLM
onto the back aperture of the microscope objective. This same objectiveis then used to view
the sample with bright-field illumination. The Gantt chart to the right outlines the steps in
one iteration of the loop, along with approximate timings and transfer functions used to
calculate the theoretical power spectrum in (6).

2. Theory

The motion of a particle in an optical trap is well described by the Langevin equation [15]:

mẍ+ γ ẋ+κx = ζ (t) (1)

wherem is the particle’s mass (the inertial termmẍ is usually neglected),γ = 6πηa is the
hydrodynamic drag coefficient (for a sphere of radiusa in a fluid with viscosityη) andζ (t)
represents the force exerted on the bead by the thermal motion of the fluid molecules.x is the
position of the particle, shown here in one dimension. Theseequations also hold fory andz
independently, as the model used here is separable. The restoring force from the optical trap is
characterised by the spring constantκ , which assumes a Hookean optical trap atx = 0. By tak-
ing the Fourier transform of (1) and using the fluctuation-dissipation theorem to give the power
spectrum ofζ asγkBT/π, wherekB is Boltzmann’s constant andT is absolute temperature, we
can derive the power spectrum ofx for a particle held in a stationary trap as

(−ω2m+ iγ +κ)x̃ = ζ̃ (ω) (2)

Sx = γkBT/π
(

(κ −mω2)2 + γ2ω2)−1
(3)

where ˜x denotes the Fourier transform ofx andSx is its power spectrum. We can modify (1) to
include a varying trap position in the restoring force term:

mẍ+ γ ẋ+κ
(

x− xtrap(t)
)

= ζ (t). (4)

If, xtrap were simply proportional to−x, the only effect of feedback would be to increase the ef-
fective stiffness of the trapkBT/

〈

x2
〉

. However, each element of the feedback system (outlined
in Fig. 1) introduces latency and filtering. The SLM refreshes at discrete intervals, which gives
rise to low pass filtering (transfer function sinc(ωτSLM/2)) and an effective latency of half
the update periodτSLM = 5ms (transfer function exp(−iωτSLM/2)). Aliasing can be neglected
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both as the power spectrum falls sharply withω and the low pass filtering from the SLM acts
as an antialiasing filter. The liquid crystal also has a finiteresponse timeτr ≈ 2ms, modelled
by the transfer function 1/(1+ iτrω), and additional latency in the system (due to software and
image acquisition) is represented by transfer function exp(iωτlag). This leads to an expression
for x̃trap of

x̃trap≈−Gx̃sinc(ω/τSLM/2)e−iω(τSLM/2+τlag)
1

1+ iτrω
(5)

whereG is the feedback gain. Substituting (5) into (2), we can derive the power spectrum for a
bead in a closed loop holographic trap:

Sx = γkBT/π
∣

∣

∣
−ω2m+ iγω +κ +κ Gsinc(πω/ωSLM)e−iω(τSLM/2+τlag)/(1+ iτRω)

∣

∣

∣

−2
(6)

Due to the approximation made in (5) that aliasing in the feedback signal is unimportant, this
result is only valid for cases where the update frequency of the SLM is much greater than the
corner frequency of the trap; with currently available technology this restricts us to relatively
weak traps or highly viscous fluids. Figure 3 shows this spectrum plotted along with experimen-
tal data for a 5µm bead in a trap withκ = 2.1×10−6Nm−1. The spectra exhibit the expected
suppression of Brownian motion at low frequencies (decreasing the variance by a factor of
1+G), but have a resonance at a frequency of approximately(2τSLM +4τlag+2τr)

−1. Control
theory establishes it is impossible to achieve a broadband reduction in the system’s sensitiv-
ity to error, and hence this resonance cannot be eliminated [5]. However, as the underlying
power spectrum forG = 0 has a Lorentzian shape, the impact of the resonance on the particle’s
position distribution decreases as it is moved to higher frequencies; thus the improvement in
effective trap stiffness depends to a large extent on minimising latency in the system.

To obtain the expected improvement in spatial localisation, we can calculate the variance
of the particle’s position distribution

〈

x2
〉

(and similarly
〈

y2
〉

) by numerically integrating the
power spectrum. For a standard 60Hz SLM, we would not expect asignificant reduction in
〈

x2
〉

. However, with an SLM running at 203Hz the improvement couldbe as much as 50%.
The improvement for a 5µm bead in a relatively weak holographic trap (κ ≈ 2.1×10−6Nm−1)
is shown in the inset in Fig. 3 along with experimental data, as a function of f̃ (ω) which is
assumed to be a constant. It shows a reduction in

〈

x2
〉

as gain is increased, which reaches a
minimum and starts to increase again. At higher gains, the assumption in (4) that the restoring
force is unlimited becomes invalid, as the trapping force falls off once

∣

∣x− xtrap
∣

∣ ' a. In practice
this means the bead is lost from the trap.

3. Experimental setup

As outlined in Fig. 1, the trapping beam is generated by a 532nm frequency doubled Nd:YAG
laser (Laser Quantum Opus), operating at an output power of 1Watt). The beam’s polarisa-
tion is controlled viaλ/2 waveplates to maximise diffraction efficiency. The beam isexpanded
and directed onto a Boulder Nonlinear Systems Spatial LightModulator (XY Series) 512x512
pixels, operating at 203Hz, 16 bit. The high bit depth means the trap can be steered to a theoret-
ical accuracy of better than 1Å [16, 17], and the diffraction efficiency varies by less than 10%
over the 20µm field of view used here. The diffracted beam is then sent via apolarising beam
splitter cube into an inverted Zeiss Microscope (Axiovert 200). The same objective lens (Zeiss
100X Plan-Neofluar, NA 1.30) was used for trapping and imaging the particles onto a Prosilica
GC640 Gigabit Ethernet camera. The frame rate of this cameradepends on the field of view,
for example a single bead can be imaged at over 1kHz and a triangular configuration of beads
side 14µm across could be imaged at 460Hz. The images were analysed on-line using a centre
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of mass algorithm. Image analysis and feedback control wereperformed in LabVIEW run-
ning on a quad core computer, which also contained the graphics processor used for hologram
calculation (nVidia Quadro FX 5600).

4. Hologram calculation

After tracking with the camera the measured particle positions were used to calculate the new
trap positions.

xtrap = −Gx (7)

In order to minimise latency, the resulting holograms were calculated with a non-iterative al-
gorithm based on direct superposition of wedges and lenses [18, 19] running on the system’s
graphics processor.

To calculate a hologram which will produce multiple diffraction-limited spots, we use an
analytic expression for one spot, the combination of a lens and a prism:

φi(x,y) = kxx+ kyy+ kz(x
2 + y2). (8)

We then superpose these holograms to get the final phase-onlyhologramφT (x,y):

φT = Arg

[

∑
i

exp(iφi(x,y))

]

= Arg

[

∑
i

exp
(

i[kxx+ kyy+ kz(x
2 + y2)]

)

]

(9)

Iterative algorithms are often used to optimise the hologram, which is particularly important
for large arrays of spots [20]. However, in our case the high speed outweighs the imperfections
in the holograms produced.

Driven by the demand for realistic 3D graphics, modern GPUs have a large number of pro-
cessing cores (128 for the Quadro FX 5600), which can executecustom “shader programs”
during rendering. This has previously been used to calculate φi(x,y) as arrays and then to sum
the arrays [21]. However we have used one custom shader to allow the entire algorithm to be
executed in parallel. We evaluate (9) using a loop overi for each pixel to eliminate the need for
large arrays. The consequent reduction in memory access gives an order of magnitude increase
in speed. The OpenGL environment allows the hologram to be rendered directly into the frame
buffer in a single pass. This is a significant advantage over nVidia’s more flexible CUDA envi-
ronment where the hologram must be calculated as a large array then re-rendered from texture
memory to the frame buffer. Our algorithm takes less than a millisecond to calculate and display
a hologram, allowing us to achieve sufficiently low latencies to make feedback viable. This can
be freely downloaded from [22].

5. Results and discussion

It is important to distinguish the addressing rate of the SLMand the speed with which a beam
can be steered in practice. To measure the beam steering speed of the SLM, it was used to
switch the laser spot between two positions repeatedly. Theintensity at these two positions was
measured using the camera at a frame rate of 1.6kHz and is plotted in Fig. 2. This shows the
response to a 50Hz square wave, and is close to the exponential approximation in Section 2
with a response timeτR ≈ 2ms. The asymmetry in the response may be due to nonlinearities
in the camera’s response and the overall decrease in diffraction efficiency as the SLM switches
from one hologram to the next.

The power spectra of a single bead’s fluctuations about the target position are shown in
Fig. 3 for various values of feedback gainG. The trap had a stiffness ofκ = 2.1×10−6Nm−1,
measured by fitting a Lorentzian to the power spectrum in the case of no feedback. This had

#118205 - $15.00 USD Received 7 Oct 2009; revised 16 Nov 2009; accepted 18 Nov 2009; published 25 Nov 2009

(C) 2009 OSA 7 December 2009 / Vol. 17,  No. 25 / OPTICS EXPRESS  22722



0 10 20 30 40 50 60
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time ms

In
te

n
si

ty
 (

ar
b
.u

n
it

s)

Position 1

Position 2

Model

Fig. 2. Intensity at two points, when the SLM is used to switch the laser spot between them.
The solid line shows the modelled response of Section 2, withτR = 2ms.

a corner frequencyfc = κ/(2πγ) ≈ 4.0Hz. The response time was taken as 2ms to match the
experimentally observed response of the SLM. This left additional latency as the only parameter
to fit; the best fit value was 10ms (see Fig. 1). An excellent agreement is seen for low feedback
gains, though at higher gains the resonance is less sharp than predicted. This discrepancy is
perhaps due to the finite trap depth as discussed above. However, the system still performs as
expected, reducing

〈

x2
〉

by 44% corresponding to an increase in effective trap strength κ ′ =

kBT/
〈

x2
〉

of 77%. The data shown in Fig. 3 were collected with the high speed camera running
at 1kHz. The exposure time was close to 1ms, which acted as an antialiasing filter. The deviation
from the Lorentzian line at high frequencies arises from thenoise floor of the camera system,
however its contribution to

〈

x2
〉

is extremely small.
The results in Fig. 3 are for a single particle, and could be reproduced with other techniques

such as AODs. The advantage of holographic optical tweezersis that we can easily extend
this to multiple particles, and to that end Fig. 4 shows threetrapped beads and histograms of
their displacements from the trap centres (x andy). The variance of their position distributions
was reduced by 47% on average when position-clamping was turned on. This demonstrates
the unique ability of holographic optical tweezers and camera-based position measurement to
perform feedback on multiple optical traps. In the intrestsof experimental simplicity we use
only a proportional control in the generation of all feedback signals, no integral or derivative
gain was used. The power spectra for three beads are also shown in Fig. 4(c), for no feedback
and for the optimal gainG = 1.7. This optimal value was chosen by analysing a number of
experimental data sets over a wide range of gain values and finding the minimum varience in
position (see 3 (inset)).

These power spectra are very similar to those shown in. Fig. 3, for a single particle. This is in
spite of the fact that the larger region of interest (260 x 210pixels) necessitated a slower frame
rate for the camera of 460Hz (c.f. 1kHz). This shows the slower frame rate does not signifi-
cantly affect the system’s performance, only the range overwhich power spectra can be plotted.
The resonance at approximately 100Hz we believe stems from modulation of the intensity of
the illumination, and misalignments in the microscope condenser. The peak is present even
when no control is used and its height is uncorrelated with gain.It accounted for/ 5% of the
variances. Filtering out the resonance gives a slightly greater improvement (by a few percent)
in

〈

x2
〉

. Other configurations of beads, such as a line, were also usedand similar results were
obtained.

Two potential concerns in the use of SLMs for closed-loop HOTare the discrete nature
of the SLM and imperfections resulting from the simple hologram design method used. The
former can result in the trap being constrained to certain discrete positions due to the finite
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resolution and number of gray levels on the SLM [16, 17]. The Boulder SLM used for this
experiment uses 16-bit values which, even after processing, means there are several thousand
usable gray levels and the theoretical step size is far below1Å. This is much smaller than the
size of the Brownian motion we seek to suppress. The second concern, that of non-uniform
trap intensities or coupling between traps, is primarily anissue for large, regular arrays of traps
rather than the small number of traps used here. More sophisticated algorithms could be used
to mitigate this effect should the technique be applied to large arrays [20]. Despite both these
concerns, the agreement of our system’s performance with the theoretical model shows that
neither concern is the limiting factor. Rather, it is latency in the control loop which limits the
system’s performance.

6. Conclusions

We present a closed-loop holographic optical tweezers system capable of feedback on multiple
particles in 3 dimensions without the need for time sharing or complex optics. We find good
agreement between experimentally measured results and ourtheoretical model, and reduce the
variance of a 5µm bead’s position by 44%. The holographic position-clamp does not have the
high bandwidth of AOD or galvo-mirror based systems, however its ability to clamp multiple
particles makes it a promising technique. Furthermore, itsbandwidth (and hence the improve-
ment in localisation) will improve as SLM technology develops further. It is also possible to use
a camera to estimate a bead’s axial position [23, 24] and future work could use this, combined
with the 3D capabilities of HOT, to position clamp in 3D. As with AODs, closed-loop operation
can combine highly sensitive force measurement with good spatial localisation. It therefore has
many exciting applications to micro-tools [13, 14] or force-feedback interfaces [25].

#118205 - $15.00 USD Received 7 Oct 2009; revised 16 Nov 2009; accepted 18 Nov 2009; published 25 Nov 2009

(C) 2009 OSA 7 December 2009 / Vol. 17,  No. 25 / OPTICS EXPRESS  22725


